GNSS Spoofing Detection Based on Coupled Visual/Inertial/GNSS Navigation System

Author:

Gu NianzuORCID,Xing Fei,You Zheng

Abstract

Spoofing attacks are one of the severest threats for global navigation satellite systems (GNSSs). This kind of attack can damage the navigation systems of unmanned air vehicles (UAVs) and other unmanned vehicles (UVs), which are highly dependent on GNSSs. A novel method for GNSS spoofing detection based on a coupled visual/inertial/GNSS positioning algorithm is proposed in this paper. Visual inertial odometry (VIO) has high accuracy for state estimation in the short term and is a good supplement for GNSSs. Coupled VIO/GNSS navigation systems are, unfortunately, also vulnerable when the GNSS is subject to spoofing attacks. The method proposed in this article involves monitoring the deviation between the VIO and GNSS under an optimization framework. A modified Chi-square test triggers the spoofing alarm when the detection factors become abnormal. After spoofing detection, the optimal estimation algorithm is modified to prevent it being deceived by the spoofed GNSS data and to enable it to carry on positioning. The performance of the proposed spoofing detection method is evaluated through a real-world visual/inertial/GNSS dataset and a real GNSS spoofing attack experiment. The results indicate that the proposed method works well even when the deviation caused by spoofing is small, which proves the efficiency of the method.

Funder

NSFC project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference27 articles.

1. Principles of GNSS, Inertial, and Multi-Sensor Integrated Navigation Systems;Groves,2007

2. A New Approach to Estimate True Position of Unmanned Aerial Vehicles in an INS/GPS Integration System in GPS Spoofing Attack Conditions

3. Iran’s Alleged Drone Hack: Tough, But Possiblehttp://www.wired.com/dangerroom/2011/12/iran-drone-hack-gps

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3