Measuring Liquid Droplet Size in Two-Phase Nozzle Flow Employing Numerical and Experimental Analyses

Author:

Jiang Lin,Rao Wei,Deng LeiORCID,Incecik Atilla,Królczyk GrzegorzORCID,Li ZhixiongORCID

Abstract

The flavoring process ensures the quality of cigarettes by endowing them with special tastes. In this process, the flavoring liquid is atomized into particles by a nozzle and mixed with the tobacco in a rotating drum. The particle size of the flavoring liquid has great influence on the atomization effect; however, limited research has addressed the quantitation of the liquid particle size in two-phase nozzle flow. To bridge this research gap, the authors of this study employed numerical and experimental techniques to explore the quantitative analysis of particle size. First, a simulation model for the flavoring nozzle was established to investigate the atomization effect under different ejection pressures. Then, an experimental test is carried out to compare the test results with the simulation results. Lastly, the influencing factors of liquid particle size in two-phase nozzle flow were analyzed to quantify particle size. The analysis results demonstrated that there was a cubic correction relationship between the simulation and experiment particle size. The findings of this study may provide a reliable reference when evaluating the atomization effect of flavoring nozzles.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3