Ultra-Thin Terahertz Deflection Device Based on Laser Direct Writing Graphene Oxide Paper

Author:

Suo Yixin,Zhang Luming,Li Yihang,Wu Yu,Zhang JianORCID,Wen Qiye

Abstract

In the world of terahertz bands, terahertz beam deflection has gradually attracted substantial attention, due to its great significance in wireless communications, high-resolution imaging and radar applications. In this paper, a low-reflection and fast-fabricated terahertz beam deflection device has been realized by utilizing graphene oxide paper. Using laser direct writing technology, graphene oxide has been patterned as a specific sample. The thickness of the graphene oxide-based terahertz devices is around 15–20 μm, and the processing takes only a few seconds. The experimental results show that the beam from this device can achieve 5.7° and 10.2° deflection at 340 GHz, while the reflection is 10%, which is only 1/5 of that of existing conventional devices. The proposed device with excellent performance can be quickly manufactured and applied in the fields of terahertz imaging, communication, and perception, enabling the application of terahertz technology.

Funder

the National Natural Science Foundation of China

Science Challenge Project

the Sichuan Science and Technology Support Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3