Three-Dimensional Kidney-on-a-Chip Assessment of Contrast-Induced Kidney Injury: Osmolality and Viscosity

Author:

Kim Kipyo,Jeong Beomgyun,Lee Yun-Mi,Son Hyung-Eun,Ryu Ji-Young,Park Seokwoo,Jeong Jong Cheol,Chin Ho Jun,Kim SejoongORCID

Abstract

Increased viscosity of concentrated contrast media (CM) in the renal tubules can perturb renal hemodynamics and have a detrimental effect on tubular epithelial cells. However, the effects of viscosity on contrast-induced nephropathy (CIN) remain poorly understood. Conventional in vitro culture studies do not reflect the rheological properties of CM. Therefore, we investigated the effects of CM viscosity on renal tubules using a kidney-on-a-chip and two different types of CM. Renal proximal tubule epithelial cells (RPTEC) were cultured in a three-dimensional microfluidic culture platform under bidirectional fluid shear stress. We treated the RPTEC with two types of CM: low- (LOCM, iopromide) and iso-osmolar contrast media (IOCM, iodixanol). Renal tubular cell injury induced by LOCM and IOCM was examined under different iodine concentrations (50–250 mgI/mL) and shear-stress conditions. LOCM showed a significant dose-dependent cytotoxic effect, which was significantly higher than that of IOCM under static and low-to-moderate shear stress conditions. However, high shear-stress resulted in reduced cell viability in IOCM; no difference between IOCM and LOCM was found under high shear-stress conditions. The cytotoxic effects were pronounced at a mean shear stress of 1 dyn/cm2 or higher. The high viscosity of IOCM slowed the fluid flow rate and augmented fluid shear-stress. We suggest an alternative in vitro model of CIN using the three-dimensional kidney-on-a-chip. Our results indicate a vital role of viscosity-induced nephrotoxicity under high shear-stress conditions, contrary to the findings of conventional in vitro studies.

Funder

National Research Foundation of Korea

Korean Society of Nephrology

SNUBH Research Fund

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Major on-chip applications;Human Organs-On-a-chip;2024

2. Advanced in vitro models for renal cell carcinoma therapy design;Biochimica et Biophysica Acta (BBA) - Reviews on Cancer;2023-09

3. Models for barrier understanding in health and disease in lab-on-a-chips;Tissue Barriers;2023-06-09

4. Microfluidic trends in drug screening and drug delivery;TrAC Trends in Analytical Chemistry;2023-01

5. Effect of shear stress on the proximal tubule-on-a-chip for multi-organ microphysiological system;Journal of Industrial and Engineering Chemistry;2022-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3