Abstract
Based on the phase transition of vanadium dioxide(VO2), an ultra-broadband tunable terahertz metamaterial absorber is proposed. The absorber consists of bilayer VO2 square ring arrays with different sizes, which are completely wrapped in Topas and placed on gold substrate. The simulation results show that the absorption greater than 90% has frequencies ranging from 1.63 THz to 12.39 THz, which provides an absorption frequency bandwidth of 10.76 THz, and a relative bandwidth of 153.5%. By changing the electrical conductivity of VO2, the absorption intensity can be dynamically adjusted between 4.4% and 99.9%. The physical mechanism of complete absorption is elucidated by the impedance matching theory and field distribution. The proposed absorber has demonstrated its properties of polarization insensitivity and wide-angle absorption, and therefore has a variety of application prospects in the terahertz range, such as stealth, modulation, and sensing.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献