Abstract
Transcription factor (TF) networks define the precise development of multicellular organisms. While many studies focused on TFs expressed in specific cell types to elucidate their contribution to cell specification and differentiation, it is less understood how broadly expressed TFs perform their precise functions in the different cellular contexts. To uncover differences that could explain tissue-specific functions of such TFs, we analyzed here genomic chromatin interactions of the broadly expressed Drosophila Hox TF Ultrabithorax (Ubx) in the mesodermal and neuronal tissues using bioinformatics. Our investigations showed that Ubx preferentially interacts with multiple yet tissue-specific chromatin sites in putative regulatory regions of genes in both tissues. Importantly, we found the classical Hox/Ubx DNA binding motif to be enriched only among the neuronal Ubx chromatin interactions, whereas a novel Ubx-like motif with rather low predicted Hox affinities was identified among the regions bound by Ubx in the mesoderm. Finally, our analysis revealed that tissues-specific Ubx chromatin sites are also different with regards to the distribution of active and repressive histone marks. Based on our data, we propose that the tissue-related differences in Ubx binding behavior could be a result of the emergence of the mesoderm as a new germ layer in triploblastic animals, which might have required the Hox TFs to relax their binding specificity.
Subject
Cell Biology,Developmental Biology,Molecular Biology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献