Utilization of a Low-Cost Sensor Array for Mobile Methane Monitoring

Author:

Silberstein Jonathan1ORCID,Wellbrook Matthew2,Hannigan Michael1

Affiliation:

1. Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, CO 80309, USA

2. Urban Labs, University of Chicago, 33 North LaSalle Street Suite 1600, Chicago, IL 60602, USA

Abstract

The use of low-cost sensors (LCSs) for the mobile monitoring of oil and gas emissions is an understudied application of low-cost air quality monitoring devices. To assess the efficacy of low-cost sensors as a screening tool for the mobile monitoring of fugitive methane emissions stemming from well sites in eastern Colorado, we colocated an array of low-cost sensors (XPOD) with a reference grade methane monitor (Aeris Ultra) on a mobile monitoring vehicle from 15 August through 27 September 2023. Fitting our low-cost sensor data with a bootstrap and aggregated random forest model, we found a high correlation between the reference and XPOD CH4 concentrations (r = 0.719) and a low experimental error (RMSD = 0.3673 ppm). Other calibration models, including multilinear regression and artificial neural networks (ANN), were either unable to distinguish individual methane spikes above baseline or had a significantly elevated error (RMSDANN = 0.4669 ppm) when compared to the random forest model. Using out-of-bag predictor permutations, we found that sensors that showed the highest correlation with methane displayed the greatest significance in our random forest model. As we reduced the percentage of colocation data employed in the random forest model, errors did not significantly increase until a specific threshold (50 percent of total calibration data). Using a peakfinding algorithm, we found that our model was able to predict 80 percent of methane spikes above 2.5 ppm throughout the duration of our field campaign, with a false response rate of 35 percent.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3