Multi-Objective Optimization Using Evolutionary Cuckoo Search Algorithm for Evacuation Planning

Author:

Sicuaio ToméORCID,Niyomubyeyi OliveORCID,Shyndyapin Andrey,Pilesjö Petter,Mansourian AliORCID

Abstract

Proper emergency evacuation planning is a key to ensuring the safety and efficiency of resources allocation in disaster events. An efficient evacuation plan can save human lives and avoid other effects of disasters. To develop effective evacuation plans, this study proposed a multi-objective optimization model that assigns individuals to emergency shelters through safe evacuation routes during the available periods. The main objective of the proposed model is to minimize the total travel distance of individuals leaving evacuation zones to shelters, minimize the risk on evacuation routes and minimize the overload of shelters. The experimental results show that the Discrete Multi-Objective Cuckoo Search (DMOCS) has better and consistent performance as compared to the standard Multi-Objective Cuckoo Search (MOCS) in most cases in terms of execution time; however, the performance of MOCS is still within acceptable ranges. Metrics and measures such as hypervolume indicator, convergence evaluation and parameter tuning have been applied to evaluate the quality of Pareto front and the performance of the proposed algorithm. The results showed that the DMOCS has better performance than the standard MOCS.

Funder

Swedish International Development Cooperation Agency

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Business and International Management

Reference44 articles.

1. Multiple Objective Decision Making—Methods and Aplications: A State of the Art Survey;Hwang,2012

2. A multi-objective particle swarm optimization for the submission decision process

3. Evacuation planning using multiobjective evolutionary optimization approach

4. Evolutionary Many-Objective Ooptimization: A Quick-Start Guide;Chand;Surv. Oper. Res. Manag. Sci.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3