The Concept of Lineaments in Geological Structural Analysis; Principles and Methods: A Review Based on Examples from Norway

Author:

Gabrielsen Roy H.1,Olesen Odleiv2

Affiliation:

1. Department of Geosciences, University of Oslo, 0316 Oslo, Norway

2. Norges Geologiske Undersøkelse (NGU), Torgarden, P.O. Box 6315, 7491 Trondheim, Norway

Abstract

Application of lineament analysis in structural geology gained renewed interest when remote sensing data and technology became available through dedicated Earth observation satellites like Landsat in 1972. Lineament data have since been widely used in general structural investigations and resource and geohazard studies. The present contribution argues that lineament analysis remains a useful tool in structural geology research both at the regional and local scales. However, the traditional “lineament study” is only one of several methods. It is argued here that structural and lineament remote sensing studies can be separated into four distinct strategies or approaches. The general analyzing approach includes general structural analysis and identification of foliation patterns and composite structural units (mega-units). The general approach is routinely used by most geologists in preparation for field work, and it is argued that at least parts of this should be performed manually by staff who will participate in the field activity. We argue that this approach should be a cyclic process so that the lineament database is continuously revised by the integration of data acquired by field data and supplementary data sets, like geophysical geochronological data. To ensure that general geological (field) knowledge is not neglected, it is our experience that at least a part of this type of analysis should be performed manually. The statistical approach conforms with what most geologists would regard as “lineament analysis” and is based on statistical scrutiny of the available lineament data with the aim of identifying zones of an enhanced (or subdued) lineament density. It would commonly predict the general geometric characteristics and classification of individual lineaments or groups of lineaments. Due to efficiency, capacity, consistency of interpretation methods, interpretation and statistical handling, this interpretative approach may most conveniently be performed through the use of automatized methods, namely by applying algorithms for pattern recognition and machine learning. The focused and dynamic approaches focus on specified lineaments or faults and commonly include a full structural geological analysis and data acquired from field work. It is emphasized that geophysical (potential field) data should be utilized in lineament analysis wherever available in all approaches. Furthermore, great care should be taken in the construction of the database, which should be tailored for this kind of study. The database should have a 3D or even 4D capacity and be object-oriented and designed to absorb different (and even unforeseen) data types on all scales. It should also be designed to interface with shifting modeling tools and other databases. Studies of the Norwegian mainland have utilized most of these strategies in lineament studies on different scales. It is concluded that lineament studies have revealed fracture and fault systems and the geometric relations between them, which would have remained unknown without application of remote sensing data and lineament analysis.

Publisher

MDPI AG

Reference140 articles.

1. Lineaments, linear, lineation: Some proposed new names and standards;Friedman;Geol. Soc. Am. Bull.,1976

2. Sabins, F.F. (1976). Remote Sensing. Principles and Interpretation, W.H. Freeman & Co.

3. A possible extensive crustal failure system of economic interest;Norman;J. Pet. Geol.,1982

4. Quaternary oblique extensional tectonics in the Ethiopian Rift (Horn of Africa);Bocaletti;Tectonophysics,1998

5. Failure modes of lineaments on Jupiter’s moon, Europa: Implications for the evolution of its icy crust;Aydin;J. Struct. Geol.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3