Conditional Feature Selection: Evaluating Model Averaging When Selecting Features with Shapley Values

Author:

Huber Florian1,Steinhage Volker1ORCID

Affiliation:

1. Department of Computer Science IV, University of Bonn, 53121 Bonn, Germany

Abstract

In the field of geomatics, artificial intelligence (AI) and especially machine learning (ML) are rapidly transforming the field of geomatics with respect to collecting, managing, and analyzing spatial data. Feature selection as a building block in ML is crucial because it directly impacts the performance and predictive power of a model by selecting the most critical variables and eliminating the redundant and irrelevant ones. Random forests have now been used for decades and allow for building models with high accuracy. However, finding the most expressive features from the dataset by selecting the most important features within random forests is still a challenging question. The often-used internal Gini importances of random forests are based on the amount of training examples that are divided by a feature but fail to acknowledge the magnitude of change in the target variable, leading to suboptimal selections. Shapley values are an established and unified framework for feature attribution, i.e., specifying how much each feature in a trained ML model contributes to the predictions for a given instance. Previous studies highlight the effectiveness of Shapley values for feature selection in real-world applications, while other research emphasizes certain theoretical limitations. This study provides an application-driven discussion of Shapley values for feature selection by first proposing four necessary conditions for a successful feature selection with Shapley values that are extracted from a multitude of critical research in the field. Given these valuable conditions, Shapley value feature selection is nevertheless a model averaging procedure by definition, where unimportant features can alter the final selection. Therefore, we additionally present Conditional Feature Selection (CFS) as a novel algorithm for performing feature selection that mitigates this problem and use it to evaluate the impact of model averaging in several real-world examples, covering the use of ML in geomatics. The results of this study show Shapley values as a good measure for feature selection when compared with Gini feature importances on four real-world examples, improving the RMSE by 5% when averaged over selections of all possible subset sizes. An even better selection can be achieved by CFS, improving on the Gini selection by approximately 7.5% in terms of RMSE. For random forests, Shapley value calculation can be performed in polynomial time, offering an advantage over the exponential runtime of CFS, building a trade-off to the lost accuracy in feature selection due to model averaging.

Funder

Federal Ministry of Food and Agriculture

Publisher

MDPI AG

Reference64 articles.

1. Crop yield prediction using machine learning: A systematic literature review;Kassahun;Comput. Electron. Agric.,2020

2. Role of machine learning in medical research: A survey;Garg;Comput. Sci. Rev.,2021

3. A systematic review of machine learning in logistics and supply chain management: Current trends and future directions;Akbari;Benchmarking Int. J.,2021

4. Review of Artificial Intelligence Applications in the Geomatics Field;Ali;Int. J. Appl. Sci. Curr. Future Res. Trends,2023

5. Bordogna, G., and Fugazza, C. (2022). Artificial Intelligence for Multisource Geospatial Information, MDPI.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3