Comparative Analysis of Algorithms to Cleanse Soil Micro-Relief Point Clouds

Author:

Ott Simone1ORCID,Burkhard Benjamin1ORCID,Harmening Corinna2,Paffenholz Jens-André3ORCID,Steinhoff-Knopp Bastian4ORCID

Affiliation:

1. Institute of Physical Geography and Landscape Ecology, Leibniz University of Hannover, 30167 Hannover, Germany

2. Geodetic Institute Karlsruhe (GIK), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

3. Institute of Geo-Engineering, Clausthal University of Technology (TUC), 38678 Clausthal-Zellerfeld, Germany

4. Coordination Unit Climate and Soil, Thünen-Institute, 38116 Braunschweig, Germany

Abstract

Detecting changes in soil micro-relief in farmland helps to understand degradation processes like sheet erosion. Using the high-resolution technique of terrestrial laser scanning (TLS), we generated point clouds of three 2 × 3 m plots on a weekly basis from May to mid-June in 2022 on cultivated farmland in Germany. Three well-known applications for eliminating vegetation points in the generated point cloud were tested: Cloth Simulation Filter (CSF) as a filtering method, three variants of CANUPO as a machine learning method, and ArcGIS PointCNN as a deep learning method, a sub-category of machine learning using deep neural networks. We assessed the methods with hard criteria such as F1 score, balanced accuracy, height differences, and their standard deviations to the reference surface, resulting in data gaps and robustness, and with soft criteria such as time-saving capacity, accessibility, and user knowledge. All algorithms showed a low performance at the initial measurement epoch, increasing with later epochs. While most of the results demonstrate a better performance of ArcGIS PointCNN, this algorithm revealed an exceptionally low performance in plot 1, which is describable by the generalization gap. Although CANUPO variants created the highest amount of data gaps, we recommend that CANUPO include colour values in combination with CSF.

Funder

Lower Saxonian State Authority for Mining, Energy and Geology of Lower Saxony

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Materials Science (miscellaneous),Business and International Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3