Author:
Mao Tian,Zhang Xin,Zhou Baorong
Abstract
Electric vehicles (EVs) are now attracting increasing interest from both industries and countries as an environmentally friendly and energy efficient mode of travel. Therefore, the EV charging and/or discharging issue has become an important challenge and research topic in power systems in recent years. An advanced and economic EV charging process, however, should employ smart scheduling, which depends on effective and robust algorithms. To that end, a comprehensive intelligent scatter search (ISS) algorithm within the frame of a basic scatter search has been designed with both unidirectional and bidirectional charging considered. The ISS structure also supports both a flexible and constant charging power rate by respectively employing filter-SQP (sequential quadratic programming) and mixed-integer SQP as local solvers with module control. The detailed design of ISS is presented and the objectives of smoothing the daily load profile and minimizing the charging cost have been tested. Compared with methods based on GS (global search), GA (genetic algorithm), and PSO (particle swarm optimization), the outcome-verified ISS can produce attractive results with a significantly short computational time. Moreover, to handle a large scale EV charging scenario, a hybrid method comprised of a GA and ISS approach has been further developed. Simulation results also verified its prominent performance, plus superbly low computational time.
Funder
Nanyang Technological University
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献