Intelligent Energy Management Algorithms for EV-charging Scheduling with Consideration of Multiple EV Charging Modes

Author:

Mao Tian,Zhang Xin,Zhou Baorong

Abstract

Electric vehicles (EVs) are now attracting increasing interest from both industries and countries as an environmentally friendly and energy efficient mode of travel. Therefore, the EV charging and/or discharging issue has become an important challenge and research topic in power systems in recent years. An advanced and economic EV charging process, however, should employ smart scheduling, which depends on effective and robust algorithms. To that end, a comprehensive intelligent scatter search (ISS) algorithm within the frame of a basic scatter search has been designed with both unidirectional and bidirectional charging considered. The ISS structure also supports both a flexible and constant charging power rate by respectively employing filter-SQP (sequential quadratic programming) and mixed-integer SQP as local solvers with module control. The detailed design of ISS is presented and the objectives of smoothing the daily load profile and minimizing the charging cost have been tested. Compared with methods based on GS (global search), GA (genetic algorithm), and PSO (particle swarm optimization), the outcome-verified ISS can produce attractive results with a significantly short computational time. Moreover, to handle a large scale EV charging scenario, a hybrid method comprised of a GA and ISS approach has been further developed. Simulation results also verified its prominent performance, plus superbly low computational time.

Funder

Nanyang Technological University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The effect of vehicle-to-grid integration on power grid stability: A review;IOP Conference Series: Earth and Environmental Science;2023-12-01

2. A Gaussian random walk salp swarm algorithm for optimal dynamic charging of electric vehicles;Applied Soft Computing;2023-11

3. Electric Vehicle Advancements, Barriers, and Potential: A Comprehensive Review;Electric Power Components and Systems;2023-07-30

4. Analysis of Different Charging Modes in Electric Vehicle (EV) Application;2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT);2023-07-06

5. Quantum approximate optimization algorithm for qudit systems;Physical Review A;2023-06-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3