A Review of Gasoline Compression Ignition: A Promising Technology Potentially Fueled with Mixtures of Gasoline and Biodiesel to Meet Future Engine Efficiency and Emission Targets

Author:

Putrasari Yanuandri,Lim Ocktaeck

Abstract

Efforts have been made to develop efficient and alternative powertrains for internal combustion engines including combustion at low-temperature (LTC) concepts. LTC has been widely studied as a novel combustion mode that offers the possibility to minimize both nitrogen oxide (NOx) and particulate matter (PM) via enhanced air-fuel mixing and intake charge dilution, resulting in lower peak combustion temperatures. Gasoline compression ignition (GCI) is a new ignition method related to the extensive classification of combustion at low-temperature approaches. In this method of ignition, a fuel with high evaporation characteristics and low autoignition sensitivity, for instance gasoline, is burned in a high pressure process. Despite many research efforts, there are still many challenges related with GCI performance for compression ignition (CI) engines. Unstable combustion for idle- to low-load operation was observed because of the low reactivity characteristics of gasoline, and this will affect the efficiency and emissions of the engine. This paper contributes a detailed review of several topics associated with GCI engines and the effort to improve its efficiency and emissions, including its potential when using gasoline-biodiesel blends. Some recommendations are proposed to encourage GCI engines improvement and development in the near future.

Funder

National Research Foundation of Korea

Kementerian Riset Teknologi Dan Pendidikan Tinggi Republik Indonesia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3