Heart Rate Estimation from Incomplete Electrocardiography Signals

Author:

Song Yawei,Chen JiaORCID,Zhang Rongxin

Abstract

As one of the most remarkable indicators of physiological health, heart rate (HR) has become an unfailing investigation for researchers. Unlike many existing methods, this article proposes an approach to implement short-time HR estimation from electrocardiography in time series missing patterns. Benefiting from the rapid development of deep learning, we adopted a bidirectional long short-term memory model (Bi-LSTM) and temporal convolution network (TCN) to recover complete heartbeat signals from those with durations are less than one cardiac cycle, and the estimated HR from recovered segment combining the input and the predicted output. We also compared the performance of Bi-LSTM and TCN in PhysioNet dataset. Validating the method over a resting heart rate range of 60–120 bpm in the database without significant arrhythmias and a corresponding range of 30–150 bpm in the database with arrhythmias, we found that networks provide an estimated approach for incomplete signals in a fixed format. These results are consistent with real heartbeats in the normal heartbeat dataset (γ > 0.7, RMSE < 10) and in the arrhythmia database (γ > 0.6, RMSE < 30), verifying that HR could be estimated by models in advance. We also discussed the short-time limits for the predictive model. It could be used for physiological purposes such as mobile sensing in time-constrained scenarios, and providing useful insights for better time series analyses in missing data patterns.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3