A Synthetic Data Generation Technique for Enhancement of Prediction Accuracy of Electric Vehicles Demand

Author:

Chatterjee SubhajitORCID,Byun Yung-CheolORCID

Abstract

In terms of electric vehicles (EVs), electric kickboards are crucial elements of smart transportation networks for short-distance travel that is risk-free, economical, and environmentally friendly. Forecasting the daily demand can improve the local service provider’s access to information and help them manage their short-term supply more effectively. This study developed the forecasting model using real-time data and weather information from Jeju Island, South Korea. Cluster analysis under the rental pattern of the electric kickboard is a component of the forecasting processes. We cannot achieve noticeable results at first because of the low amount of training data. We require a lot of data to produce a solid prediction result. For the sake of the subsequent experimental procedure, we created synthetic time-series data using a generative adversarial networks (GAN) approach and combined the synthetic data with the original data. The outcomes have shown how the GAN-based synthetic data generation approach has the potential to enhance prediction accuracy. We employ an ensemble model to improve prediction results that cannot be achieved using a single regressor model. It is a weighted combination of several base regression models to one meta-regressor. To anticipate the daily demand in this study, we create an ensemble model by merging three separate base machine learning algorithms, namely CatBoost, Random Forest (RF), and Extreme Gradient Boosting (XGBoost). The effectiveness of the suggested strategies was assessed using some evaluation indicators. The forecasting outcomes demonstrate that mixing synthetic data with original data improves the robustness of daily demand forecasting and outperforms other models by generating more agreeable values for suggested assessment measures. The outcomes further show that applying ensemble techniques can reasonably increase the forecasting model’s accuracy for daily electric kickboard demand.

Funder

Ministry of Small and Medium-sized Enterprises (SMEs) and Startups (MSS), Korea

Korea Institute for Advancement of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3