High-Speed Fully Differential Two-Step ADC Design Method for CMOS Image Sensor

Author:

Guo ZhongjieORCID,Wang Yangle,Xu Ruiming,Yu Ningmei

Abstract

The application requirements of high frame rate CMOS image sensors (CIS) in the industry have not been satisfied due to the speed limitations in traditional single-slope and serial two-step analog-to-digital converters (ADCs). In this paper, a high-speed fully differential two-step ADC design method for CIS was proposed. The proposed method was based on differential ramp and time-to-digital conversion (TDC) technology. A parallel conversion mode was formed that is different from serial conversion, and the robustness of the system was ensured due to the existence of differential ramps. Aiming at the inconsistency between traditional TDC technology and single-slope ADC, a TDC technology based on level coding was proposed. The proposed technology achieves the TDC in the last clock cycle of analog-to-digital conversion, and realized a two-step conversion process at another level. This paper presents a complete circuit design, layout design, and test verification of the proposed design method based on the 55 nm 1P4M CMOS experimental platform. Under the design environment of the analog voltage of 3.3 V, the digital voltage of 1.2 V, the clock frequency of 100 MHz, and a dynamic input range of 1.6 V, this design was a 12-bit ADC with a conversion time of 480 ns, column-level power consumption of 62 μW, differential nonlinearity (DNL) of +0.6/−0.6 LSB, and integral nonlinearity (INL) of +1.2/−1.4 LSB. Furthermore, it achieved a signal-to-noise distortion ratio (SNDR) of 70.08 dB. The proposed design provided a large area array with a high frame rate, and compared with the existing advanced single-slope ADC, its conversion speed increased by more than 52%. It provides an effective solution for the implementation of high frame frequency CIS

Funder

National Natural Science Foundation of China

Key research and development plan of Shaanxi province

Shaanxi innovation Capability Support Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3