The Optimization of Steam Generation in a Biomass-Fired Micro-Cogeneration Prototype Operating on a Modified Rankine Cycle

Author:

Sornek Krzysztof1ORCID,Jankowski Marcin1,Borsukiewicz Aleksandra2ORCID,Filipowicz Mariusz1

Affiliation:

1. Department of Sustainable Energy Development, Faculty of Energy and Fuels, AGH University of Krakow, Krakow, 30-059 Krakow, Poland

2. Department of Energy Technologies, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, 70-310 Szczecin, Poland

Abstract

According to the United Nations, one of the sustainable development goals is to ensure access to affordable, reliable, sustainable, and modern energy for all. Among other options, these goals can be achieved by developing and introducing micro-scale combined heat and power systems powered by renewable energy sources, including solar and biomass energy. Considering renewable energy-powered cogeneration technologies, the most promising are steam/vapor turbines, Stirling engines, and thermoelectric generators. This paper focuses on the selected operational aspects and retrofitting optimization of the prototypical micro-cogeneration system powered by a biomass-fired batch boiler and operating according to the modified Rankine cycle. The existing installation was tested, and the amount of energy transferred from the oil to the condensate and steam and the efficiency of the evaporator and the superheater were determined. A retrofitting optimization aimed at maximizing the piston engine’s power output was conducted based on the results. In particular, it was shown that the system’s power output might be as high as 9 kWe. Moreover, the analyzed system featured a high energy utilization factor of 97.9% at optimal operating conditions. In general, it was shown that the micro-scale steam Rankine system may successfully serve as an alternative technology for micro- and distributed cogeneration systems. As a technology supplied with renewable biomass energy and operating on a cheap and environmentally friendly working medium (water), it fits very well into the idea of sustainable energy system development.

Funder

AGH University of Science and Technology in Krakow

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3