Experimental Research on Heat Transfer and Strength Analysis of Backfill with Ice Grains in Deep Mines

Author:

Zhang Xiaoyan,Jia Yuhang,Wang MeiORCID,Liu Lang

Abstract

In deep mines, two urgent problems are a high temperature thermal environment and solid waste. Filling the goaf with slurry mixed with ice grains is an effective way to solve these two problems simultaneously. The thermal property and mechanical property of the ice-added backfill have a great influence on the cooling effect in the deep mine. In this study, an experimental facility for measuring the temperature distribution of ice-added backfill slurry was established, and the temperature of backfill slurry with different proportions was measured. Then, the thermal properties of temperature distribution and cooling capacity and the mechanical property of uniaxial compressive strength of the backfill specimens were analyzed, and the results indicated the following: firstly, the cooling capacity of ice-added backfill specimens is negatively related with the slurry concentration C and is positively related with the ice-water ratio Ω; secondly, the strength of backfill specimens is affected by the slurry concentration C and ice-water ratio Ω by a contrary law compared to the cooling capacity; thirdly, ice-added backfill slurry with an ice-water ratio Ω of 1:1 has the best mechanical property after solidification. The effects of the slurry concentration and ice-water ratio on the thermal and mechanical properties were analyzed, and the results indicated that the optimum proportion of ice-added backfill slurry is a slurry concentration of 74% and an ice-water ratio of 1:1 in the present research range. This study is significant for the deep mine cooling method with ice-added backfill.

Funder

Natural Science Basic Research Plan in Shaanxi Province of China

National Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference42 articles.

1. Opportunities and challenges in deep mining: A brief review;Pathegama;Engineering,2017

2. Dynamic problems in deep exploitation of hard rock metal mines;Yao;Chin. J. Nonferrous Met.,2011

3. Review and practice of deep mining for solid mineral resources;Li;Chin. J. Nonferrous Met.,2017

4. Application of HEMS cooling technology in deep mine heat hazard control

5. Research and development of HEMS cooling system and heat-harm control in deep mine;He;Chin. J. Rock Mech. Eng.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3