Balancing Physical Channel Stability and Aquatic Ecological Function through River Restoration

Author:

Mielhausen Josie12,Cockburn Jaclyn M. H.1ORCID,Villard Paul V.2,Baril André-Marcel2ORCID

Affiliation:

1. Department of Geography, Environment & Geomatics, University of Guelph, Guelph, ON N1G 2W1, Canada

2. GEO Morphix Ltd., Cambellville, ON L0P 1B0, Canada

Abstract

Vortex rock weirs (VRW) are often used in natural channel design applications to maintain channel form and function, provide physical channel stability, and enhance aquatic habitats. A balanced approach is required to address (often) conflicting goals of VRWs, which include providing erosion protection and grade control while facilitating fish passage for target species. This research evaluated a sequence of modified VRWs in a small-scale watercourse in Southern Ontario, Canada. To determine passage suitability for the target fish species, the water level, water temperature, and channel geometries at 10 VRWs and 11 adjacent pools were monitored under different water level conditions. The structural dimensions and velocity at each VRW were compared to the burst swim speed of local small-bodied fish species to determine fish passage suitability and identify the best practices for VRW design and construction. The results concluded that VRWs provided suitable passage for small-bodied fish species through gap and over-weir flow pathways, particularly during low water level conditions. Further, appropriate design considerations based on the VRW gradient, VRW width, keystone size, and pool length contributed to 100% fish ‘passability’ under all water level conditions. The methodology is provided for predicting the velocity and small-bodied fish passage suitability through VRWs, informing the best practices for VRW design and construction while balancing the requirements for channel stability and fish passage, and contributing to fish population management strategies.

Funder

Canadian Foundation for Innovation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3