Abstract
Cellulose is one of the important biomass materials in nature and has shown wide applications in various fields from materials science, biomedicine, tissue engineering, wearable devices, energy, and environmental science, as well as many others. Due to their one-dimensional nanostructure, high specific surface area, excellent biodegradability, low cost, and high sustainability, cellulose nanofibrils/nanofibers (CNFs) have been widely used for environmental science applications in the last years. In this review, we summarize the advance in the design, synthesis, and water purification applications of CNF-based functional nanomaterials. To achieve this aim, we firstly introduce the synthesis and functionalization of CNFs, which are further extended for the formation of CNF hybrid materials by combining with other functional nanoscale building blocks, such as polymers, biomolecules, nanoparticles, carbon nanotubes, and two-dimensional (2D) materials. Then, the fabrication methods of CNF-based 2D membranes/films, three-dimensional (3D) hydrogels, and 3D aerogels are presented. Regarding the environmental science applications, CNF-based nanomaterials for the removal of metal ions, anions, organic dyes, oils, and bio-contents are demonstrated and discussed in detail. Finally, the challenges and outlooks in this promising research field are discussed. It is expected that this topical review will guide and inspire the design and fabrication of CNF-based novel nanomaterials with high sustainability for practical applications.
Funder
Taishan Scholar Foundation of Shandong Province
Subject
General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献