Abstract
The growing demands for electrical energy, especially renewable, is boosting the development of wind turbines equipped with longer composite blades. To reduce the maintenance cost of such huge composite parts, the structural health monitoring (SHM) is an approach to anticipate and/or follow the structural behaviour along time. Apart from the development of traditional non-destructive testing methods, in order to reduce the use of intrusive instrumentation there is a growing interest for the development of “self-sensing materials”. An interesting route to achieve this, can be to introduce carbon nanofillers such as nanotubes (CNT) in the composite structures, which enables to create systems that are sensitive to both strain and damage. This review aims at updating the state of the art of this topic so far. A first overview of the existing SHM techniques for thermoset based wind turbine blades composites is presented. Then, the use of self-sensing materials for strain and damage sensing is presented. Different strategies are overviewed and discussed, from the design of conductive composites such as carbon fibres reinforced polymers, to the elaboration of conductive nano-reinforced polymer composites. The origins of sensing mechanisms along with the percolation theory applied to nanofillers dispersed in polymer matrices are also detailed.
Subject
Engineering (miscellaneous),Ceramics and Composites
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献