Structural Response Prediction for Damage Identification Using Wavelet Spectra in Convolutional Neural Network

Author:

Moscoso Alcantara Edisson Alberto,Bong Michelle Diana,Saito Taiki

Abstract

If damage to a building caused by an earthquake is not detected immediately, the opportunity to decide on quick action, such as evacuating the building, is lost. For this reason, it is necessary to develop modern technologies that can quickly obtain the structural safety condition of buildings after an earthquake in order to resume economic and social activities and mitigate future damage by aftershocks. A methodology for the prediction of damage identification is proposed in this study. Using the wavelet spectrum of the absolute acceleration record measured by a single accelerometer located on the upper floor of a building as input data, a CNN model is trained to predict the damage information of the building. The maximum ductility factor, inter-story drift ratio, and maximum response acceleration of each floor are predicted as the damage information, and their accuracy is verified by comparing with the results of seismic response analysis using actual earthquakes. Finally, when an earthquake occurs, the proposed methodology enables immediate action by revealing the damage status of the building from the accelerometer observation records.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference35 articles.

1. Emergency Report No. 53—COEN-SINADECI,2007

2. Resilient City and Seismic Risk: A Spatial Multicriteria Approach;Tilio;Comput. Sci. Appl.—ICCSA,2011

3. Innovations in earthquake risk reduction for resilience: Recent advances and challenges

4. Seismic Structural Health Monitoring: From Theory to Successful Applications;Limongelli,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3