Enhancing 5G Small Cell Selection: A Neural Network and IoV-Based Approach

Author:

Alablani Ibtihal AhmedORCID,Arafah Mohammed AmerORCID

Abstract

The ultra-dense network (UDN) is one of the key technologies in fifth generation (5G) networks. It is used to enhance the system capacity issue by deploying small cells at high density. In 5G UDNs, the cell selection process requires high computational complexity, so it is considered to be an open NP-hard problem. Internet of Vehicles (IoV) technology has become a new trend that aims to connect vehicles, people, infrastructure and networks to improve a transportation system. In this paper, we propose a machine-learning and IoV-based cell selection scheme called Artificial Neural Network Cell Selection (ANN-CS). It aims to select the small cell that has the longest dwell time. A feed-forward back-propagation ANN (FFBP-ANN) was trained to perform the selection task, based on moving vehicle information. Real datasets of vehicles and base stations (BSs), collected in Los Angeles, were used for training and evaluation purposes. Simulation results show that the trained ANN model has high accuracy, with a very low percentage of errors. In addition, the proposed ANN-CS decreases the handover rate by up to 33.33% and increases the dwell time by up to 15.47%, thereby minimizing the number of unsuccessful and unnecessary handovers (HOs). Furthermore, it led to an enhancement in terms of the downlink throughput achieved by vehicles.

Funder

Deanship of Scientific Research, King Saud University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 5G Network Deployment Planning Using Metaheuristic Approaches;Telecom;2024-07-09

2. Optimizing cell selection for data services in mm-waves spectrum through enhanced extreme gradient boosting;Results in Engineering;2024-03

3. Dual-Mode Cell Planning with Paging Monitoring for 5G Networks and Beyond;2024 1st International Conference on Cognitive, Green and Ubiquitous Computing (IC-CGU);2024-03-01

4. UL-CNN: An Unsupervised CNN Model for User Association in Wireless Networks;2023 8th International Conference on Signal and Image Processing (ICSIP);2023-07-08

5. COVID-ConvNet: A Convolutional Neural Network Classifier for Diagnosing COVID-19 Infection;Diagnostics;2023-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3