Abstract
In this study, not only was the similar terephthalate structure between UIO-66 and PET utilized to improve compatibility, but the Zr4+ exposed by defects of UIO-66 was also utilized to improve the interaction between PET and UIO-66. Furthermore, PET nanocomposites with different contents of UIO-66 were also fabricated. Due to the high specific surface area and coordination of Zr4+, UIO-66 has high nucleation efficiency in the PET matrix. Compared with pure PET, the crystallization rate of PET/UIO-66 nanocomposite is significantly increased, and the crystallization temperature of PET-UIO66-1 is significantly increased from 194.3 °C to 211.6 °C. In addition, the tensile strength of nanocomposites has also been improved due to coordination.
Subject
Polymers and Plastics,General Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献