Abstract
We synthesized a series of polystyrene derivatives modified with precursors of liquid crystal (LC) molecules via polymer modification reactions. Thereafter, the orientation of the LC molecules on the polymer films, which possess part of the corresponding LC molecular structure, was investigated systematically. The precursors and the corresponding derivatives used in this study include ethyl-p-hydroxybenzoate (homopolymer P2BO and copolymer P2BO#, where # indicates the molar fraction of ethylbenzoate-p-oxymethyl in the side chain (# = 20, 40, 60, and 80)), n-butyl-p-hydroxybenzoate (P4BO), n-hexyl-p-hydroxybenzoate (P6BO), and n-octyl-p-hydroxybenzoate (P8BO). A stable and uniform vertical orientation of LC molecules was observed in LC cells fabricated with P2BO#, with 40 mol% or more ethylbenzoate-p-oxymethyl side groups. In addition, the LC molecules were oriented vertically in LC cells fabricated with homopolymers of P2BO, P4BO, P6BO, and P8BO. The water contact angle on the polymer films can be associated with the vertical orientation of the LC molecules in the LC cells fabricated with the polymer films. For example, vertical LC orientation was observed when the water contact angle of the polymer films was greater than ~86°. Good orientation stability was observed at 150 °C and with 20 J/cm2 of UV irradiation for LC cells fabricated with the P2BO film.
Funder
Dong-A University Research Fund
Subject
Polymers and Plastics,General Chemistry