Abstract
The regeneration of soft tissues that connect, support or surround other tissues is of great interest. In this sense, hydrogels have great potential as scaffolds for their regeneration. Among the different raw materials, chitosan stands out for being highly biocompatible, which, together with its biodegradability and structure, makes it a great alternative for the manufacture of hydrogels. Therefore, the aim of this work was to develop and characterize chitosan hydrogels. To this end, the most important parameters of their processing, i.e., agitation time, pH, gelation temperature and concentration of the biopolymer used were rheologically evaluated. The results show that the agitation time does not have a significant influence on hydrogels, whereas a change in pH (from 3.2 to 7) is a key factor for their formation. Furthermore, a low gelation temperature (4 °C) favors the formation of the hydrogel, showing better mechanical properties. Finally, there is a percentage of biopolymer saturation, from which the properties of the hydrogels are not further improved (1.5 wt.%). This work addresses the development of hydrogels with high thermal resistance, which allows their use as scaffolds without damaging their mechanical properties.
Funder
FEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación
Subject
Polymers and Plastics,General Chemistry
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献