Abstract
Pectin-based antibacterial bionanocomposite films were prepared by crosslinking with calcium chloride (CaCl2) and mixing with zinc oxide nanoparticles (ZnO-NPs) at various concentrations (0.5%, 1%, and 1.5% w/w, based on pectin). Crosslinking with 1% CaCl2 significantly (p < 0.05) improved the tensile strength of the pectin films, although their elongation at break was decreased. The UV-light barrier property of the pectin/ZnO bionanocomposite films was significantly (p < 0.05) improved with increasing ZnO-NP concentrations. In addition, the bionanocomposite films incorporating 1.5% ZnO-NPs showed excellent antibacterial effects against both Escherichia coli and Staphylococcus aureus, inhibiting over 99% of the bacteria. Therefore, the developed crosslinked pectin/ZnO bionanocomposite films show great potential as active packaging materials with excellent UV-blocking and antibacterial properties.
Subject
Polymers and Plastics,General Chemistry
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献