Optimization of High-Throughput Multiplexed Phenotyping of Extracellular Vesicles Performed in 96-Well Microtiter Plates

Author:

Jørgensen Malene MøllerORCID,Sloth Jenni Kathrine,Bæk Rikke

Abstract

Extracellular vesicles (EVs) are promising biomarkers for several diseases, however, no simple and robust methods exist to characterize EVs in a clinical setting. The EV Array analysis is based on a protein microarray platform, where antibodies are printed onto a solid surface that enables the capture of small EVs (sEVs) by their surface or surface-associated proteins. The EV Array analysis was transferred to an easily handled microtiter plate (MTP) format and a range of optimization experiments were performed within this study. The optimization was performed in a comprehensive analytical setup where the focus was on the selection of additives added to spotting-, blocking-, and incubation buffers as well as the storage of printed antibody arrays under different temperatures from one day to 12 weeks. After ending the analysis, the stability of the fluorescent signal was investigated at different storage conditions for up to eight weeks. The various parameters and conditions tested within this study were shown to have a high influence on each other. The reactivity of the spots was found to be preserved for up to 12 weeks when stored at room temperature and using blocking procedure IV in combination with trehalose in the spotting buffer. Similar preservation could be obtained using glycerol or sciSPOT D1 in the spotting buffers, but only if stored at 4 °C after blocking procedure I. Conclusively, it was found that immediate scanning of the MTPs after analysis was not critical if stored dried, in the dark, and at room temperature. The findings in this study highlight the necessity of performing optimization experiments when transferring an established analysis to a new technological platform.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3