Enzymatic Synthesis of Muconic Acid-Based Polymers: Trans, Trans-Dimethyl Muconate and Trans, β-Dimethyl Hydromuconate

Author:

Maniar DinaORCID,Fodor CsabaORCID,Karno Adi Indra,Woortman Albert J. J.,van Dijken Jur,Loos KatjaORCID

Abstract

The vast majority of commodity polymers are acquired from petrochemical feedstock, and these resources will plausibly be depleted within the next 100 years. Therefore, the utilization of carbon-neutral renewable resources for the production of polymers is crucial in modern green chemistry. Herein, we report an eco-friendly strategy that uses enzyme catalysis to design biobased unsaturated (co)polyesters from muconic acid derivatives. This method is an attractive pathway for the production of well-defined unsaturated polyesters with minimum side reactions. A suite of characterization techniques was performed to probe the reaction mechanism and properties of the obtained polyesters. It is rationalized that the alkene functionality of the muconate monomers plays an important role in the enzyme catalysis mechanism. The rendered polyesters possessed excellent thermal stabilities and unreacted alkene functionality that can consecutively undergo chain extension, copolymerization, or act as an anchor for other functional groups. These properties open new avenues in the fields of unsaturated polyester resins and photosensitive coatings.

Funder

Lembaga Pengelola Dana Pendidikan

ERA IB

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3