A Review on Molecularly Imprinted Polymers Preparation by Computational Simulation-Aided Methods

Author:

Liu Zhimin,Xu ZhigangORCID,Wang Dan,Yang Yuming,Duan Yunli,Ma Liping,Lin Tao,Liu Hongcheng

Abstract

Molecularly imprinted polymers (MIPs) are obtained by initiating the polymerization of functional monomers surrounding a template molecule in the presence of crosslinkers and porogens. The best adsorption performance can be achieved by optimizing the polymerization conditions, but this process is time consuming and labor-intensive. Theoretical calculation based on calculation simulations and intermolecular forces is an effective method to solve this problem because it is convenient, versatile, environmentally friendly, and inexpensive. In this article, computational simulation modeling methods are introduced, and the theoretical optimization methods of various molecular simulation calculation software for preparing molecularly imprinted polymers are proposed. The progress in research on and application of molecularly imprinted polymers prepared by computational simulations and computational software in the past two decades are reviewed. Computer molecular simulation methods, including molecular mechanics, molecular dynamics and quantum mechanics, are universally applicable for the MIP-based materials. Furthermore, the new role of computational simulation in the future development of molecular imprinting technology is explored.

Funder

National Natural Science Foundation of China

the Scientific Research Fund Project of Yunnan Provincial Department of Education

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3