High-Strength and Low-Cost Biobased Polyurethane Foam Composites Enhanced by Poplar Wood Powder Liquefaction

Author:

Yang Wanjia,Han Yanming,Zhang Wei,Zhang Derong

Abstract

An environmentally friendly liquefaction of wood powder was prepared by atmospheric pressure liquefaction technology to replace the non-renewable petroleum polyols in the preparation of polyurethane foam composites. The liquefaction time varied from 0 min to 140 min. The composition of liquefied products and the effects of liquefaction time on the morphology, apparent density and mechanical properties of polyurethane foam composites were investigated. The results showed that the optimal process time for the preparation of wood powder liquefaction products, which could replace traditional petroleum polyols, was 110 min. At this time, polyether polyols are the main liquefaction products, with an average molecular weight in Mn reaching 237 and average molecular weight in Mw reaching 246. The functional group of the liquefied product consisted mainly of hydroxyl, with the highest content of 1042 mg KOH/g and the lowest acid number of 1.6 mg KOH/g. In addition, the surface of the polyurethane foam based on poplar wood is dominated by closed cell foam; thus its foam has good heat insulation and heat preservation properties. At 110 min liquefaction time, the apparent density of polyurethane foam is 0.164 g/cm3 and the compression strength is 850 kPa, which is higher than that of traditional polyurethane foam (768 kPa), which is without wood powder modification. Replacing petroleum polyol with renewable wood powder liquefaction products to prepare biomass-based polyurethane foam composite materials, researching complex chemical changes in different liquefaction stages, and finding the best liquefaction conditions are of great significance to optimize the performance of polyurethane, address the shortage of resources and reduce environmental pollution.

Funder

the National Natural Science Foundation of China

the Beijing Forestry University Outstanding Young Talent Cultivation Project

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3