Analysis of the Effect of Parameters on Fracture Toughness of Hemp Fiber Reinforced Hybrid Composites Using the ANOVA Method

Author:

Madhusudhana H. K.ORCID,Kumar M. Prasanna,Patil Arun Y.,Keshavamurthy R.ORCID,Khan T. M. YunusORCID,Badruddin Irfan AnjumORCID,Kamangar SarfarazORCID

Abstract

In today’s world, global warming has become a concern. To overcome this, we need to reduce the carbon footprints caused by the production of materials. Much of the time, this is equivalent to the same amount of CO2 emissions per tonne of production. This is a serious concern and needs to be overcome by identifying alternative materials to have as minimal a carbon footprint as possible. In this context, hemp fiber is by far the best natural fiber when compared to its peers. As per the survey conducted by the Nova institute, hemp has CO2 emissions of only 360 Kg/tonne, whereas jute has CO2 emissions of 550 Kg/tonne, kenaf 420 Kg/tonne, and flax 350 Kg/tonne. This paper presents an experimental study of the fracture toughness of hemp-reinforced hybrid composites (HRHC). The effect of the parameters on the fracture toughness behavior of HRHC is studied using the Taguchi technique. It uses different filler combinations with hemp fiber and epoxy. Hemp fiber is used as the reinforcement, epoxy resin is used as a matrix, and banana fiber, coconut shell powder, and sawdust are used as fillers. The experimental plan is prepared using an orthogonal array and analyzed using Minitab software. The obtained results were analyzed using ANOVA and main effects plots. It was observed that the fracture toughness increases with a decrease in thickness. The fracture toughness is affected by the fiber content in the range of 25%–35% and is also affected by the filler materials.

Funder

King Khalid University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3