From Amorphous Silicones to Si-Containing Highly Ordered Polymers: Some Romanian Contributions in the Field

Author:

Cazacu MariaORCID,Racles Carmen,Zaltariov Mirela-Fernanda,Dascalu Mihaela,Bele AdrianORCID,Tugui Codrin,Bargan AlexandraORCID,Stiubianu George

Abstract

Polydimethylsiloxane (PDMS), in spite of its well-defined helical structure, is an amorphous fluid even at extremely high molecular weights. The cause of this behavior is the high flexibility of the siloxane backbone and the lack of intermolecular interactions attributed to the presence of methyl groups. These make PDMS incompatible with almost any organic or inorganic component leading to phase separation in siloxane-siloxane copolymers containing blocks with polar organic groups and in siloxane-organic copolymers, where dimethylsiloxane segments co-exist with organic ones. Self-assembly at the micro- or nanometric scale is common in certain mixed structures, including micelles, vesicles, et cetera, manifesting reversibly in response to an external stimulus. Polymers with a very high degree of ordering in the form of high-quality crystals were obtained when siloxane/silane segments co-exist with coordinated metal blocks in the polymer chain. While in the case of coordination of secondary building units (SBUs) with siloxane ligands 1D chains are formed; when coordination is achieved in the presence of a mixture of ligands, siloxane and organic, 2D structures are formed in most cases. The Romanian research group’s results regarding these aspects are reviewed: from the synthesis of classic, amorphous silicone products, to their adaptation for use in emerging fields and to new self-assembled or highly ordered structures with properties that create perspectives for the use of silicones in hitherto unexpected areas.

Funder

Ministry of Research and Innovation, CNCS - UEFISCDI

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference136 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3