Molecular Brushes with a Polyimide Backbone and Poly(ε-Caprolactone) Side Chains by the Combination of ATRP, ROP, and CuAAC

Author:

Kashina Anna V.,Meleshko Tamara K.,Bogorad Natalia N.,Lavrentyev Viktor K.,Yakimansky Alexander V.

Abstract

An approach to the synthesis of the novel molecular brushes with a polyimide (PI) backbone and poly(ε-caprolactone) (PCL) side chains was developed. To obtain such copolymers, a combination of various synthesis methods was used, including polycondensation, atom transfer radical polymerization (ATRP), ring opening polymerization (ROP), and Cu (I)-catalyzed azide-alkyne Huisgen cycloaddition (CuAAC). ATRP of 2-hydroxyethyl methacrylate (HEMA) on PI macroinitiator followed by ROP of ε-caprolactone (CL) provided a “brush on brush” structure PI-g-(PHEMA-g-PCL). For the synthesis of PI-g-PCL two synthetic routes combining ROP and CuAAC were compared: (1) polymer-analogous transformations of a multicenter PI macroinitiator with an initiating hydroxyl group separated from the main chain by a triazole ring followed by ROP of CL, or (2) a separate synthesis of macromonomers with the desirable functional groups (polyimide with azide groups and PCL with terminal alkyne groups), followed by a click reaction. Results showed that the first approach allows to obtain graft copolymers with a PI backbone and relatively short PCL side chains. While the implementation of the second approach leads to a more significant increase in the molecular weight, but unreacted linear PCL remains in the system. Obtained macroinitiators and copolymers were characterized using 1H NMR and IR spectroscopy, their molecular weight characteristics were determined by SEC with triple detection. TGA and DSC were used to determine their thermal properties. X-ray scattering data showed that the introduction of a polyimide block into the polycaprolactone matrix did not change the degree of crystallinity of PCL.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3