Durable Modification of Wood by Benzoylation—Proof of Covalent Bonding by Solution State NMR and DOSY NMR Quick-Test

Author:

Namyslo Jan C.,Drafz Martin H. H.,Kaufmann Dieter E.ORCID

Abstract

A convenient, broadly applicable and durable wood protection was recently published by Kaufmann and Namyslo. This procedure efficiently allows for esterification of wood hydroxyl groups with (1H-benzotriazolyl)-activated functionalized benzoic acids. The result of such wood-modifying reactions is usually monitored by an increase in mass of the wood material (weight percent gain value, WPG) and by infrared spectroscopy (IR). However, diagnostic IR bands suffer from overlap with naturally occurring ester groups, mainly in the hemicellulose part of unmodified wood. In contrast to known NMR spectroscopy approaches that use the non-commonly available solid state techniques, herein we present solution state NMR proof of the covalent attachment of our organic precursors to wood. The finding is based on a time-efficient, non-uniformly sampled (NUS) solution state 1H,13C-HMBC experiment that only needs a tenth of the regular recording time. The appropriate NMR sample of thoroughly dissolved modified wood was prepared by a mild and non-destructive method. The 2D-HMBC shows a specific cross-signal caused by spin–spin coupling over three bonds from the ester carbonyl carbon atom to the α-protons of the esterified wood hydroxyl groups. This specific coupling pathway requires a covalent bonding as a conditio sine qua non. An even more rapid test to monitor the covalent bonding was achieved with an up-to-date diffusion-ordered spectroscopy sequence (Oneshot—DOSY) based on 1H or 19F as the sensitive nucleus. The control experiment in a series of DOSY spectra gave a by far higher D value of (1.22 ± 0.06)∙10−10 m2∙s−1, which is in accordance with fast diffusion of the “free” and thus rapidly moving small precursor molecule provided as its methyl ester. In the case of a covalent attachment to wood, a significantly smaller D value of (0.12 ± 0.01)∙10−10 m2∙s−1 was obtained.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3