Comparing Donor- and Acceptor-Originated Exciton Dynamics in Non-Fullerene Acceptor Blend Polymeric Systems

Author:

Im ChanORCID,Kang Sang-Woong,Choi Jeong-Yoon,An Jongdeok

Abstract

Non-fullerene type acceptors (NFA) have gained attention owing to their spectral extension that enables efficient solar energy capturing. For instance, the solely NFA-mediated absorbing region contributes to the photovoltaic power conversion efficiency (PCE) as high as ~30%, in the case of the solar cells comprised of fluorinated materials, PBDB-T-2F and ITIC-4F. This implies that NFAs must be able to serve as electron donors, even though they are conventionally assigned as electron acceptors. Therefore, the pathways of NFA-originated excitons need to be explored by the spectrally resolved photovoltaic characters. Additionally, excitation wavelength dependent transient absorption spectroscopy (TAS) was performed to trace the nature of the NFA-originated excitons and polymeric donor-originated excitons separately. Unique origin-dependent decay behaviors of the blend system were found by successive comparing of those solutions and pristine films which showed a dramatic change upon film formation. With the obtained experimental results, including TAS, a possible model describing origin-dependent decay pathways was suggested in the framework of reaction kinetics. Finally, numerical simulations based on the suggested model were performed to verify the feasibility, achieving reasonable correlation with experimental observables. The results should provide deeper insights in to renewable energy strategies by using novel material classes that are compatible with flexible electronics.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3