Polysaccharides as Support for Microbial Biomass-Based Adsorbents with Applications in Removal of Heavy Metals and Dyes

Author:

Blaga Alexandra Cristina,Zaharia CarmenORCID,Suteu Daniela

Abstract

The use of biosorbents for the decontamination of industrial effluent (e.g., wastewater treatment) by retaining non-biodegradable pollutants (antibiotics, dyes, and heavy metals) has been investigated in order to develop inexpensive and effective techniques. The exacerbated water pollution crisis is a huge threat to the global economy, especially in association with the rapid development of industry; thus, the sustainable reuse of different treated water resources has become a worldwide necessity. This review investigates the use of different natural (living and non-living) microbial biomass types containing polysaccharides, proteins, and lipids (natural polymers) as biosorbents in free and immobilized forms. Microbial biomass immobilization performed by using polymeric support (i.e., polysaccharides) would ensure the production of efficient biosorbents, with good mechanical resistance and easy separation ability, utilized in different effluents’ depollution. Biomass-based biosorbents, due to their outstanding biosorption abilities and good efficiency for effluent treatment (concentrated or diluted solutions of residuals/contaminants), need to be used in industrial environmental applications, to improve environmental sustainability of the economic activities. This review presents the most recent advances related the main polymers such as polysaccharides and microbial cells used for biosorbents production; a detailed analysis of the biosorption capability of algal, bacterial and fungal biomass; as well as a series of specific applications for retaining metal ions and organic dyes. Even if biosorption offers many advantages, the complexity of operation increased by the presence of multiple pollutants in real wastewater combined with insufficient knowledge on desorption and regeneration capacity of biosorbents (mostly used in laboratory scale) requires more large-scale biosorption experiments in order to adequately choose a type of biomass but also a polymeric support for an efficient treatment process.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3