Abstract
In situ injection molding of continuous fiber reinforced thermoplastic composites is challenged by unbalanced dual-scale infiltration flow due to the pronounced capillary effect. In this paper, a general and efficient approach was proposed for dual-scale infiltration flow balancing based on numerical simulation. Specifically, Stokes and Brinkman equations were used to describe the infiltration flow in inter- and intra-fiber bundles. In particular, capillary pressure drop was integrated in the Brinkmann equation to consider the capillary effect. The infiltration flow front is tracked by the level set method. Numerical simulation and experimental results indicate that the numerical model can accurately demonstrate the unbalanced infiltration flow in inter- and intra-fiber bundles caused by the changes of the injection rate, the resin viscosity, the injection rate, the fiber volume fraction and the capillary number. In addition, the infiltration flow velocity in inter- and intra-fiber bundles can be efficiently tuned by the capillary number, which is mainly determined by the injection rate for a specified resin system. The optimal capillary numbers obtained by simulation and experiment are 0.022 and 0.026, which are very close to each other. Finally, one-dimensional in situ injection molding experiments with constant injection pressure were conducted to prepare fiber reinforced polymerized cyclic butylene terephthalate composite laminate with various flow rates along the infiltration direction. The experimental results confirmed that the lowest porosity and the highest interlaminar shear strength of the composite can only be obtained with the optimized capillary number, which is basically consistent with the simulation results.
Funder
National Natural Science Foundation of China
National Natural Science Foundation of China Youth Program
Huxiang Youth Talent Support Program
Subject
Polymers and Plastics,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献