Accelerated Testing Method for Predicting Long-Term Properties of Carbon Fiber-Reinforced Shape Memory Polymer Composites in a Low Earth Orbit Environment

Author:

Jang Joon-HyeokORCID,Hong Seok-Bin,Kim Jin-GyunORCID,Goo Nam-Seo,Yu Woong-Ryeol

Abstract

Carbon fiber-reinforced shape memory polymer composites (CF-SMPCs) have been researched as a potential next-generation material for aerospace application, due to their lightweight and self-deployable properties. To this end, the mechanical properties of CF-SMPCs, including long-term durability, must be characterized in aerospace environments. In this study, the storage modulus of CF-SMPCs was investigated in a simulation of a low Earth orbit (LEO) environment involving three harsh conditions: high vacuum, and atomic oxygen (AO) and ultraviolet (UV) light exposure. CF-SMPCs in a LEO environment degrade over time due to temperature extremes and matrix erosion by AO. The opposite behavior was observed in our experiments, due to crosslinking induced by AO and UV light exposure in the LEO environment. The effects of the three harsh conditions on the properties of CF-SMPCs were characterized individually, using accelerated tests conducted at various temperatures in a space environment chamber, and were then combined using the time–temperature superposition principle. The long-term mechanical behavior of CF-SMPCs in the LEO environment was then predicted by the linear product of the shift factors obtained from the three accelerated tests. The results also indicated only a slight change in the shape memory performance of the CF-SMPCs.

Funder

Ministry of Education, Science and Technology

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3