Layer-by-Layer (LbL) Surface Augmented Modification of Poly(Styrene/Divinylbenzene)High Internal Phase Emulsion for Carbon Dioxide Capture

Author:

Azman Muhammad Imran,Chungprempree Jirasuta,Preechawong JitimaORCID,Sapsrithong Pornsri,Nithitanakul ManitORCID

Abstract

In this study, we used amines electrolyte solution with layer-by-layer (LbL) technique to modify and increase the CO2 adsorption capacity of highly porous polymer from high internal phase emulsion template polymer. This perspective presents the extraordinary versatility of emulsion templating polymerization, which has emerged with the growing numbers of HIPE systems and modification. In this study, we used polyHIPE prepared from styrene (S) and divinylbenzene (DVB) with varying ratios; 80:20, 20:80, and 0:100 to improve the surface area, thermal properties, and mechanical properties of the materials. Furthermore, the surface of the polyHIPE was modified by LbL technique to increase the adsorption efficiency. This technique consisted of two main layers, the primary layer of poly(diallyldimethylammonium chloride) (PDADMAC) and polystyrene sulfonate (PSS) and the secondary layer, which was the CO2 adsorbing layer, of polyethylene imine (PEI) or tetraethylene pentamine (TEPA). Poly(S/DVB)HIPE modified by PEI terminated as the secondary coating showed the highest CO2 adsorption capacity, with up to 42% (from 0.71 to 1.01 mmol/g). The amine-multilayered modified material still possessed an open cell structure, since the solution did not block the pore structure of the poly(S/DVB)HIPE and was suitable for being used as an adsorbent in adsorption technology.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3