Electrical Property of Polypropylene Films Subjected to Different Temperatures and DC Electric Fields

Author:

Zhang ChuyanORCID,Shi Weichen,Wang Qiao,Diao Mingguang,Hiziroglu Huseyin R.

Abstract

A polypropylene (PP) film is usually used as a dielectric material in capacitors as well as cables. However, PP films may degrade because of the combined effect of temperature and electric field. In an earlier study, plain PP films and PP films loaded with nano-metric natural clay were studied under sinusoidal (AC) electric fields at power frequency and temperatures above the ambient. To better understand the electrical characteristics of PP film under various conditions, the objective of this study is to determine the time-to-breakdown of the plain PP and PP filled with 2% (wt) natural nano-clay when subjected to time-invariant (DC) electric fields at elevated temperatures. In order to achieve this objective, the effects of uniform as well as non-uniform electric fields were compared at the same temperature for the PP film. In this study, experimental results indicated that the time-to-breakdown of all PP films, plain or filled with nano-clay, decreases with the increase in electric field intensity, non-uniformity of the electric field, and temperature. It was also found that the time-to-breakdown of PP film filled with 2% (wt) natural nano-clay under DC electric field is longer and less sensitive to temperature. Furthermore, when compared with the results under the uniform electric field, PP film filled with 2% (wt) nano-metric natural clay indicates shorter time-to-failure under non-uniform DC electric fields. Finally, the morphology of the samples was observed by digital camera, optical micrography, and SEM, to better understand the mechanism of the breakdown.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3