Ultraflexible and Mechanically Strong Polymer/Polyaniline Conductive Interpenetrating Nanocomposite via In Situ Polymerization of Vinyl Monomer

Author:

Wang HaihuaORCID,Wu Xiaojing,Qin Xuan,Fei Guiqiang,Sun Liyu,Li Yanyu,Wang Mengxi

Abstract

Simultaneous enhancement of conductivity and mechanical properties for polyaniline/polymer nanocomposite still remains a big challenge. Here, a reverse approach via in situ polymerization (RIP) of vinyl monomers in waterborne polyaniline dispersion was raised to prepare conductive polyaniline (GPANI)/polyacrylate (PMB) interpenetrating polymer (GPANI-PMB) nanocomposite. GPANI/PMB physical blend was simultaneously prepared as reference. The conductive GPANI-PMB nanocomposite film with compact pomegranate-shape morphology is homogeneous, ultraflexible and mechanically strong. With incorporating a considerable amount of PMB into GPANI via the RIP method, only a slight decrease from 3.21 to 2.80 S/cm was detected for the conductivity of GPANI-PMB, while the tensile strength significantly increased from 25 to 43.5 MPa, and the elongation at break increased from 40% to 234%. The water absorption of GPANI-PMB3 after 72 h immersion decreased from 24.68% to 10.35% in comparison with GPANI, which is also higher than that of GPANI/PMB. The conductivity and tensile strength of GPANI-PMB were also much higher than that of GPANI/PMB (0.006 S/cm vs. 5.59 MPa). Moreover, the conductivity of GPANI-PMB remained almost invariable after folding 200 times, while that of GPANI/PMB decreased by almost half. This RIP approach should be applicable for preparing conventional conductive polymer nanocomposite with high conductivity, high strength and high flexibility.

Funder

National Natural Science Foundation of China

Key Industrial Projects of Shaanxi Provincial Department of Science and Technology

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3