Abstract
A direct borohydride fuel cell (DBFC) is a type of low temperature fuel cell which requires efficient and low cost proton exchange membranes in order to commercialize it. Herein, a binary polymer blend was formulated from inexpensive and ecofriendly polymers, namely polyethylene oxide (PEO) and poly vinyl alcohol (PVA). Phosphated titanium oxide nanotube (PO4TiO2) was synthesized from a simple impregnation–calcination method and later embedded for the first time as a doping agent into this polymeric matrix with a percentage of 1–3 wt%. The membranes’ physicochemical properties such as oxidative stability and tensile strength were enhanced with increasing doping addition, while the borohydride permeability, water uptake, and swelling ratio of the membranes decreased with increasing PO4TiO2 weight percentage. However, the ionic conductivity and power density increased to 28 mS cm−1 and 72 mWcm−2 respectively for the membrane with 3 wt% of PO4TiO2 which achieved approximately 99% oxidative stability and 40.3 MPa tensile strength, better than Nafion117 (92% RW and 25 MPa). The fabricated membrane with the optimum properties (PVA/PEO/PO4TiO2-3) achieved higher selectivity than Nafion117 and could be efficient as a proton exchange membrane in the development of green and low cost DBFCs.
Funder
Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia
Subject
Polymers and Plastics,General Chemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献