Relationship between FDM 3D Printing Parameters Study: Parameter Optimization for Lower Defects

Author:

Ferretti Patrich,Leon-Cardenas ChristianORCID,Santi Gian MariaORCID,Sali Merve,Ciotti Elisa,Frizziero LeonardoORCID,Donnici GiampieroORCID,Liverani AlfredoORCID

Abstract

Technology evolution and wide research attention on 3D printing efficiency and processes have given the prompt need to reach an understanding about each technique’s prowess to deliver superior quality levels whilst showing an economical and process viability to become mainstream. Studies in the field have struggled to predict the singularities that arise during most Fused Deposition Modeling (FDM) practices; therefore, diverse individual description of the parameters have been performed, but a relationship study between them has not yet assessed. The proposed study lays the main defects caused by a selection of printing parameters which might vary layer slicing, then influencing the defect rate. Subsequently, the chosen technique for optimization is presented, with evidence of its application viability that suggests that a quality advance would be gathered with such. The results would help in making the FDM process become a reliable process that could also be used for industry manufacturing besides prototyping purposes.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3