Development, Investigation, and Comparative Study of the Effects of Various Metal Oxides on Optical Electrochemical Properties Using a Doped PANI Matrix

Author:

Bekhoukh Amina,Moulefera Imane,Sabantina LiliaORCID,Benyoucef AbdelghaniORCID

Abstract

A comparative study was performed in order to analyze the effect of metal oxide (MO) on the properties of a polymeric matrix. In this study, polyaniline (PANI)@Al2O3, PANI@TiC, and PANI@TiO2 nanocomposites were synthesized using in situ polymerization with ammonium persulfate as an oxidant. The prepared materials were characterized by various analytical methods such as X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV/visible (UV/Vis) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). Furthermore, the conductive properties of the materials were tested using the four-point probe method. The presence of MO in the final product was confirmed by XPS, XRD, FTIR, and TEM, while spectroscopic characterization revealed interactions between the MOs and PANI. The results showed that the thermal stability was improved when the MO was incorporated into the polymeric matrix. Moreover, the results revealed that incorporating TiO2 into the PANI matrix improves the optical bandgap of the nanocomposite and decreases electrical conductivity compared to other conducting materials. Furthermore, the electrochemical properties of the hybrid nanocomposites were tested by cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD). The obtained results suggest that the PANI@TiO2 nanocomposite could be a promising electrode material candidate for high-performance supercapacitor applications.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3