A Study on the Dynamic Forming Mechanism Development of the Negative Poisson’s Ratio Elastomer Molds—Plate to Plate (P2P) Forming Process

Author:

Weng Yung-Jin,Huang Jen-Ching,Chen Yueh-Yang,Hsu Shao-Teng,Zhang Zu-Rong

Abstract

This study proposed a dynamic forming mechanism development of the negative Poisson’s ratio elastomer molds—plate to plate (P2P) forming process. To dynamically stretch molds and control the microstructural shape, the proposal is committed to using the NPR structure as a regulatory mechanism. The NPR structural and dynamic parallel NPR-molds to control microstructure mold-cores were simulated and analyzed. ANSYS and MATLAB were used to simulate and predict dynamic NPR embossing replication. The hot-embossing and UV-curing dynamic NPR P2P-forming systems are designed and developed for verification. The results illustrated that the dynamic forming mechanism of the negative Poisson’s ratio elastomer molds proposed by this study can effectively control microstructure molds. This can effectively predict and calculate the geometrical characteristics of the microstructures after embossing. The multi-directional dynamic NPR microstructural replication process can accurately transfer microstructures and provide high transfer rate-replication characteristics.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3