Elucidation of Mechanical, Physical, Chemical and Thermal Properties of Microbial Composite Films by Integrating Sodium Alginate with Bacillus subtilis sp.

Author:

Wai Chun Charles Ng,Tajarudin Husnul AzanORCID,Ismail Norli,Azahari Baharin,Mohd Zaini Makhtar Muaz

Abstract

Materials are the foundation in human development for improving human standards of life. This research aimed to develop microbial composite films by integrating sodium alginate with Bacillus subtilis. Sodium alginate film was fabricated as control. The microbial composite films were fabricated by integrating 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 g of Bacillus subtilis into the sodium alginate. Evaluations were performed on the mechanical, physical, chemical and thermal properties of the films. It was found that films reinforced with Bacillus subtilis significantly improved all the mentioned properties. Results show that 0.5 g microbial composite films had the highest tensile strength, breaking strain and toughness, which were 0.858 MPa, 87.406% and 0.045 MJ/m3, respectively. The thickness of the film was 1.057 mm. White light opacity, black light opacity and brightness values were 13.65%, 40.55% and 8.19%, respectively. It also had the highest conductivity, which was 37 mV, while its water absorption ability was 300.93%. Furthermore, it had a higher melting point of 218.94 °C and higher decomposition temperature of 252.69 °C. SEM also showed that it had filled cross-sectional structure and smoother surface compared to the sodium alginate film. Additionally, FTIR showed that 0.5 g microbial composite films possessed more functional groups at 800 and 662 cm-1 wavenumbers that referred to C–C, C–OH, C–H ring and side group vibrations and C-OH out-of-plane bending, respectively, which contributed to the stronger bonds in the microbial composite film. Initial conclusions depict the potential of Bacillus subtilis to be used as reinforcing material in the development of microbial composite films, which also have the prospect to be used in electronic applications. This is due to the conductivity of the films increasing as Bacillus subtilis cell mass increases.

Funder

Kementerian Pendidikan Malaysia

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3