Mechanical Properties of Biocomposites Using Polypropylene and Sesame Oil Cake

Author:

Lee Ju-Heon,Kim Dong Hwi,Ryu YoungjaeORCID,Kim Kwan Hoon,Jeong Seong Ho,Kim Tae Yang,Cha Sung Woon

Abstract

Sesame oil cakes (SOC) produced during sesame oil production can be classified as plant residues. This study aims to use SOC as a composite material for injection molding. A biocomposite containing polypropylene (PP) and SOC, namely PP/SOC, was developed and its mechanical properties were evaluated. PP/SOC is largely divided into Homo-PP/SOC (HPS) based on Homo-PP and Block-PP/SOC (BPS) based on block-PP. The specimens containing 0–50 wt% SOC were prepared through extrusion and injection molding. As a result of the evaluation, SOC acted as a reinforcement in the matrix, and HPS and BPS showed improved flexural modulus by 36.4% and 37.3% compared to the neat PP, respectively. Tensile strength, on the other hand, decreased by 58% and 55.1%, respectively. To analyze the cause of this, cross-section observation was conducted through scanning electron microscope (SEM), and phase separation and voids were confirmed to be the cause of this. Impact strength of PP/SOC tended to vary depending on the type of matrix. HPS increased by 30.9% compared to neat PP, and BPS decreased by 25%. This tendency difference appears to be the result of SOC inhibiting crystallization of PP, and it has been confirmed through x ray diffraction (XRD) and differential scanning calorimetry (DSC) analysis. Moreover, PP/SOC can be manufactured at a low cost and is environmentally friendly because it utilizes SOC, a plant residue. It can also be applied to commercial products, such as food packaging, owing to its good moldability and improved mechanical properties.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference37 articles.

1. Human body burdens of chemicals used in plastic manufacture

2. Plastics and Health Risks

3. Studies on biodegradation of polyethylene terephthalate: A synthetic polymer;Sharon;J. Microbiol. Biotechnol. Res.,2012

4. Green composites: A brief review

5. Biodegradable composites based on lignocellulosic fibers—An overview

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3