Pressure Reduction Enhancing the Production of 5-Hydroxymethylfurfural from Glucose in Aqueous Phase Catalysis System

Author:

Ke Ke,Ji Hairui,Shen Xiaoning,Kong FangongORCID,Li Bo

Abstract

5-hydroxymethylfurfural (HMF) obtained from biomass is an important platform chemical for the next generation of plastics and biofuel production. Although industrialized, the high yield of HMF in aqueous systems was rarely achieved. The main problem is that HMF tends to form byproducts when co-adsorbed with water at acid sites. In this study, the pressure was reduced to improve the maximum yield of HMF from 9.3 to 35.2% (at 190 °C in 60 min) in a glucose aqueous solution. The mechanism here involved water boiling as caused by pressure reduction, which in turn promoted the desorption of HMF from the solid catalyst, thereby inhibiting the side reaction of HMF. Furthermore, the solid catalysts could be reused three times without a significant loss of their catalytic activity. Overall, this work provides an effective strategy to improve the yield of HMF in water over heterogeneous catalysts in practice.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Foundation of State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3