Enhanced Performance of Chitosan via a Novel Quaternary Magnetic Nanocomposite Chitosan/Grafted Halloysitenanotubes@ZnγFe3O4 for Uptake of Cr (III), Fe (III), and Mn (II) from Wastewater

Author:

Mubarak Mahmoud F.,Ragab Ahmed H.ORCID,Hosny Rasha,Ahmed Inas A.ORCID,Ahmed Hanan A.,El-Bahy Salah M.,El Shahawy AbeerORCID

Abstract

A novel chitosan/grafted halloysitenanotubes@Znγmagnetite quaternary nanocomposite (Ch/g-HNTs@ZnγM) was fabricated using the chemical co-precipitation method to remove the ions of Cr (III), Fe (III), and Mn (II) from wastewater. The characteristics of the synthesized Ch/g-HNTs@ZnγM quaternary nanocomposite were investigated using FTIR, SEM, XRD, GPC, TGA, TEM, and surface zeta potential. The characterization analysis proved that the mentioned nanocomposite structure contains multiple functional groups with variable efficiencies. Additionally, they proved the existence of magnetic iron in the nanocomposite internal structure with the clarity of presentation of gaps and holes of high electron density on its surface. The results showed that the pH and time to reach an equilibrium system for all the studied metal ions were obtained at 9.0 and 60 min, respectively. The synthesized Ch/g-HNTs@ZnγM nanocomposite exhibited maximum adsorption removal of 95.2%, 99.06%, and 87.1% for Cr (III), Fe (III), and Mn (II) ions, respectively. The pseudo-second-order kinetic model and, for isotherm, the Langmuir model were best fitted with the experimental data. The thermodynamic parameters indicated the exothermic and spontaneous nature of the adsorption reaction as proven by the ΔH° and ΔG° values. Additionally, chemical adsorption by the coordination bond is supposed as the main mechanism of adsorption of the mentioned metal ions on the nanocomposite. Finally, Ch/g-HNTs@ZnγM displays prospected advantages, such as a low-expense adsorbent, high efficiency and availability, and an eco-friendly source, that will reduce the environmental load via an environmentally friendly method.

Funder

the Dean of Science and Research at King Khalid University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3